Long Luo's Life Notes

每一天都是奇迹

By Long Luo

之前写过一篇介绍 CORDIC 算法 1 的文章,里面提到 CORDIC 算法的 不足 之处,CORDIC 算法的输入角度范围需要在 \([−99.88^{\circ} , 99.88^{\circ}]\) ,那么我们不禁要问,如果输入角度 \(\large {\theta }\) 很大的话,怎么处理呢?

这个问题同样存在于 泰勒展开式(Taylor series) 2 中,比如 \(\large {\sin (x) }\)\(\large {\cos (x) }\) 的泰勒展开式:

\[ \sin(x) = x - \frac {1}{3!}x^3 + \frac {1}{5!}x^5 - \frac {1}{7!} x^7 + \frac {1}{9!} x^9 + o(x^9) \quad \forall x \subset \mathbb{R} \]

\[ \cos(x) = 1 - \frac {1}{2!}x^2 + \frac {1}{4!}x^4 - \frac {1}{6!} x^6 + \frac {1}{8!} x^8 + o(x^8) \quad \forall x \subset \mathbb{R} \]

虽然在整个实数集 \(\large { \mathbb{R}}\) 都成立,但是在实际应用中因为展开项数限制和浮点数的精度限制, \(\large {x}\) 的范围只有在接近 \(\large {0}\) 的时候才有比较高的精度。

但是实际应用中,如果输入 \(\large {x}\) 很大的话,比如 \(\large {2^{32}, 10^{10}, 10^{22} \dots }\) 情况下怎么得到足够精确的值呢?

中学里我们知道三角函数是周期函数,对于比较大的值,我们可以使用下面的公式将值归约到一个比较小的范围内。

\[ x' = x - 2k \pi \quad k \subset \mathbb{Z} \]

这就是我们今天要讲的 参数归约(Argument Reduction) 算法。

从小学计算题开始

参数归约 听起来就很唬人,什么是参数啊,什么归约啊,都是些高大上的名词,听起来云里雾里的!

为了不让大家产生厌倦和畏难心理,我们先从一道小学数学计算题开始:

不借助计算器,计算 \(\large {66600 \times 666000}\) 的值!

对于这道题,大家可能会列出下列算术:

\[ 66600 \times 666000 = 666 \times 666 \times 100000 = 44355600000 \]

但其实呢,我们也可以使用下面的方法:

\[ \begin{aligned} 66600 \times 666000 &= 111^2 \times 4 \times 9 \times 10^5 \\&= 444 \times 999 \times 10^5 \\&= 444 \times (1000 - 1) \times 10^5 \\&= 4443556 \times 10^5 \end{aligned} \]

如果我说上面这 \(\large {2}\) 种方法都用到了参数归约的思想,你可能会感到震惊,什么?这种小学计算题也用到了参数归约算法吗?

阅读全文 »

By Long Luo

这篇文章部分内容还在优化,Demo 还在继续开发,大概还需要 7 - 8 小时写作时间。

无限猴子定理(英语:Infinite monkey theorem)

让一只猴子在打字机上随机地按键,当按键时间达到无穷时,几乎必然能够打出任何给定的文字,比如莎士比亚的全套著作。

在这里,几乎必然是一个有特定含义的数学术语,“猴子”也不是一只真正意义上的猴子,它被用来比喻成一个可以产生无限随机字母序列的抽象设备。这个理论说明把一个很大但有限的数看成无限的推论是错误的。猴子精确地通过键盘敲打出一部完整的作品比如说莎士比亚的哈姆雷特,在宇宙的生命周期中发生的概率也是极其低的,但并不是零。

遗传算法(Genetic Algorithm) 1 是一种元启发式搜索和优化技术,借鉴了生物进化中的自然选择和遗传机制。它已经在各个领域展示出了强大的应用潜力。本文将介绍遗传算法的发展历史、原理、示例,以及其广泛应用和不足之处。

发展历史

遗传算法的发展可以追溯到上世纪60年代的约翰·荷兰德(John Holland)和他的同事们的工作。他们首先提出了基因型与表现型之间的映射关系,并通过模拟生物进化过程来解决复杂的优化问题。

原理

遗传算法的核心原理是模拟自然进化的过程。它通过定义适应度函数来评估候选解的质量,并利用遗传操作(选择、交叉和变异)对候选解进行迭代改进。具体而言,算法从一个初始种群开始,通过选择适应度较高的个体作为父代,进行交叉和变异操作产生新的后代个体,然后通过评估适应度来选择出下一代个体。这个过程不断迭代,直到找到满足特定条件的优秀解。

It’s never too late

举个例子

目前参考网络资源写了一个简单的Demo,地址:http://longluo.me/projects/genetic

这个例子还有待完善!

Genetic Algorithm

阅读全文 »

By Long Luo

任何一款科学计算器上都可以计算三角函数,三角函数应用于生活工作中的方方面面,但计算机是如何计算三角函数值的呢?

三角函数本质上是直角三角形的3条边的比例关系,计算并没有很直观,那么计算机是如何计算三角函数值的呢?

在微积分中我们学习过 泰勒公式 ,我们知道可以使用泰勒展开式来对某个值求得其近似值,例如:

\[ \sin \angle 18^{\circ} = \frac{\sqrt {5} - 1}{4} \approx 0.3090169943 \]

利用泰勒公式,取前 \(4\) 项:

\[ \sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \]

代入可得:

\[ \sin \angle 18^{\circ} = \sin \frac{\pi}{10} = \frac{\pi}{10} - \frac{1}{6} (\frac{\pi}{10})^3 + \frac{1}{120} (\frac{\pi}{10})^5 - \frac{1}{5040} (\frac{\pi}{10})^7 \approx 0.30903399538 \]

可见取前 \(4\) 项时精度已经在 \(10^{-5}\) 之下,对于很多场合精度已经足够高了。

在没有了解 CORDIC(Coordinate Rotation Digital Computer) Algorithm 1 算法之前,我一直以为计算器是利用泰勒公式去求解,最近才了解到原来在计算机中,CORDIC 算法远比泰勒公式高效。

下面我们就来了解下泰勒公式的不足之处和 CORDIC 算法是怎么做的。

泰勒公式的缺点

上一节我们使用泰勒公式去计算三角函数值时,需要做很多次乘法运算,而计算器中乘法运算是很昂贵的,其缺点如下所示:

  1. 展开过小则会导致展开精度不够,展开过大则会导致计算量过大;
  2. 幂运算需要使用乘法器,存在很多重复计算;
  3. 需要很多变量来存储中间值。

在之前的文章 矩阵乘法的 Strassen 算法 ,就是通过减少乘法,多做加法,从而大大降低了运算量,那么我们可以用相同的思想来优化运算吗?

当然可以,让我们请出今天的主角:CORDIC 算法

阅读全文 »
0%