傅里叶变换(Fourier Transform)
By Long Luo
傅里叶变换(Fourier Transform)是什么?
傅里叶变换 1 \((\textit{Fourier Transform})\) 2 和傅里叶级数 \((\textit{Fourier Series})\) 3 是有史以来最伟大的数学发现之一。
傅里叶变换 \((\textit{Fourier Transform})\) 到底是什么,可以看下这个视频 形象展示傅里叶变换 ,讲的非常好。
傅里叶级数和傅里叶变换背后的本质: 任何函数都可以写成正弦函数之和。
如下Gif动图所示:
下面这个视频 12分钟的傅立叶级数动画 ,我们可以看到任何图像都可以用大圆套小圆来绘制。
因为我们日常看到的世间万物都会随时间流逝而变化,比如一段声音,一幅图像或者一盏闪烁的交通灯,这种以时间作为参照来观察动态世界的方法我们称其为时域分析。
傅里叶告诉我们任何一个信号都可以用 \(2\) 种方式来表达:
- 时域表达:自变量是时间或者空间的坐标,因变量是信号在该处的强度;
- 频域表达:把信号“展开”成不同频率的简单正弦函数的叠加,相当于看作是定义在所有频率所组成的空间(称为频域空间)上的函数,自变量是不同的频率,因变量是该频率所对应的简谐振动的幅度。
这两个函数一个定义在时域(或空域)上,一个定义在频域上。看起来的样子通常截然不同,但是它们是在以完全不同的方式殊途同归地描述着同一个信号。它们就象是两种不同的语言,乍一听完全不相干,但是其实可以精确地互相翻译。在数学上,这种翻译的过程被称为傅立叶变换\((\textit{Fourier Transform})\) 。
傅里叶变换(Fourier Transform)可以做什么?
在傅立叶变换的所有这些数学性质中,最不寻常的是这样一种特性:一个在时域或空域上看起来很复杂的信号(譬如一段声音或者一幅图像)通常在频域上的表达会很简单。这里「简单」的意思是说作为频域上的函数,它只集中在很小一块区域内,而很大一部分数值都接近于零。例如下图是一张人脸和它对应的傅立叶变换,可以看出,所有的频域信号差不多都分布在中心周围,而大部分周边区域都是黑色的(即零)。
这是一个意味深长的事实,它说明一个在空域中看起来占满全空间的信号,从频域中看起来很可能只不过占用了极小一块区域,而大部分频率是被浪费了的。这就导出了一个极为有用的结论:一个看起来信息量很大的信号,其实可以只用少得多的数据来加以描述。只要对它先做傅立叶变换,然后只记录那些不接近零的频域信息就可以了,这样数据量就可以大大减少。
基本上,这正是今天大多数数据压缩方法的基础思想。在互联网时代,大量的多媒体信息需要在尽量节省带宽和时间的前提下被传输,所以数据压缩从来都是最核心的问题之一。而今天几乎所有流行的数据压缩格式,无论是声音的mp3格式还是图像的jpg格式,都是利用傅立叶变换才得以发明的。从这个意义上说来,几乎全部现代信息社会都建立在傅立叶的理论的基础之上。
关于不确定性原理,可以看下这个讲解的视频: