By Long Luo
This article is the solution 3 Approaches: Sorting, Priority Queue and Divide and Conquer of Problem 215. Kth Largest Element in an Array.
Here shows 3 Approaches to slove this problem: Sorting, Priority Queue, Divide and Conquer.
Sorting
Sort the array first, then the \(k-th\) element of the array.| 12
 3
 4
 5
 6
 7
 8
 9
 
 | public int findKthLargest(int[] nums, int k) {if (nums == null || nums.length == 0) {
 return 0;
 }
 
 int len = nums.length;
 Arrays.sort(nums);
 return nums[len - k];
 }
 
 | 
Analysis
- Time Complexity: \(O(n \log n)\).
- Space Complexity: \(O(\log n)\).
Priority Queue
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 
 | public int findKthLargest_pq(int[] nums, int k) {PriorityQueue<Integer> pq = new PriorityQueue<>(k, Comparator.comparingInt(a -> a));
 
 for (int i = 0; i < k; i++) {
 pq.offer(nums[i]);
 }
 
 for (int i = k; i < nums.length; i++) {
 if (nums[i] > pq.peek()) {
 pq.poll();
 pq.offer(nums[i]);
 }
 }
 
 return pq.peek();
 }
 
 | 
Analysis
- Time Complexity: \(O(n \log k)\).
- Space Complexity: \(O(k)\).
Divide and Conquer
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 
 | class Solution {public Random random = new Random(System.currentTimeMillis());
 
 public int findKthLargest(int[] nums, int k) {
 int len = nums.length;
 int target = len - k;
 
 int left = 0;
 int right = len - 1;
 
 while (true) {
 int pivotIndex = partition(nums, left, right);
 if (pivotIndex == target) {
 return nums[pivotIndex];
 } else if (pivotIndex < target) {
 left = pivotIndex + 1;
 } else {
 
 right = pivotIndex - 1;
 }
 }
 }
 
 public int partition(int[] nums, int left, int right) {
 int randomIndex = left + random.nextInt(right - left + 1);
 swap(nums, left, randomIndex);
 
 
 
 int pivot = nums[left];
 int le = left + 1;
 int ge = right;
 
 while (true) {
 while (le <= ge && nums[le] < pivot) {
 le++;
 }
 
 while (le <= ge && nums[ge] > pivot) {
 ge--;
 }
 
 if (le >= ge) {
 break;
 }
 swap(nums, le, ge);
 le++;
 ge--;
 }
 
 swap(nums, left, ge);
 return ge;
 }
 
 private void swap(int[] nums, int index1, int index2) {
 int temp = nums[index1];
 nums[index1] = nums[index2];
 nums[index2] = temp;
 }
 }
 
 | 
Analysis
- Time Complexity: \(O(n)\).
- Space Complexity: \(O(1)\).
All suggestions are welcome. If you have any query or suggestion please comment below. Please upvote👍 if you like💗 it. Thank you:-)
Explore More Leetcode Solutions. 😉😃💗