【Leetcode算法题】4. 寻找两个正序数组的中位数

By Long Luo

4. 寻找两个正序数组的中位数题目如下:

  1. 寻找两个正序数组的中位数

给定两个大小分别为mmnn的正序(从小到大)数组nums1nums1nums2nums2。请你找出并返回这两个正序数组的 中位数。

示例 1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2

示例 2:
输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

示例 3:
输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000

示例 4:
输入:nums1 = [], nums2 = [1]
输出:1.00000

示例 5:
输入:nums1 = [2], nums2 = []
输出:2.00000

提示:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-10^6 <= nums1[i], nums2[i] <= 10^6

进阶:你能设计一个时间复杂度为O(log(m+n))O(log(m+n))的算法解决此问题吗?

方法一:暴力法

思路与算法:

很简单,将两个数组进行合并,然后根据新数组是奇数还是偶数来决定。

代码如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m = nums1.length;
int n = nums2.length;
int[] nums = new int[m + n];
if (m == 0) {
if (n % 2 == 0) {
return (nums2[n / 2 - 1] + nums2[n / 2]) / 2.0;
} else {
return nums2[n / 2];
}
}
if (n == 0) {
if (m % 2 == 0) {
return (nums1[m / 2 - 1] + nums1[m / 2]) / 2.0;
} else {
return nums1[m / 2];
}
}

int count = 0;
int i = 0;
int j = 0;
while (count != (m + n)) {
if (i == m) {
while (j != n) {
nums[count++] = nums2[j++];
}
break;
}
if (j == n) {
while (i != m) {
nums[count++] = nums1[i++];
}
break;
}

if (nums1[i] < nums2[j]) {
nums[count++] = nums1[i++];
} else {
nums[count++] = nums2[j++];
}
}

if (count % 2 == 0) {
return (nums[count / 2 - 1] + nums[count / 2]) / 2.0;
} else {
return nums[count / 2];
}
}

复杂度分析:

  • 时间复杂度:O(m+n)O(m+n),需要遍历2个数组。
  • 空间复杂度:O(m+n)O(m+n),开辟了一个新数组,长度为m+nm+n

方法二:二分查找

思路与算法:

注意到两个数组都是排序数组,很明显我们可以使用二分查找算法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int length1 = nums1.length, length2 = nums2.length;
int totalLength = length1 + length2;
if (totalLength % 2 == 1) {
int midIndex = totalLength / 2;
double median = getKthElement(nums1, nums2, midIndex + 1);
return median;
} else {
int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2;
double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0;
return median;
}
}

public int getKthElement(int[] nums1, int[] nums2, int k) {
/* 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较
* 这里的 "/" 表示整除
* nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个
* nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个
* 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个
* 这样 pivot 本身最大也只能是第 k-1 小的元素
* 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组
* 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组
* 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数
*/

int length1 = nums1.length, length2 = nums2.length;
int index1 = 0, index2 = 0;
int kthElement = 0;

while (true) {
// 边界情况
if (index1 == length1) {
return nums2[index2 + k - 1];
}
if (index2 == length2) {
return nums1[index1 + k - 1];
}
if (k == 1) {
return Math.min(nums1[index1], nums2[index2]);
}

// 正常情况
int half = k / 2;
int newIndex1 = Math.min(index1 + half, length1) - 1;
int newIndex2 = Math.min(index2 + half, length2) - 1;
int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2];
if (pivot1 <= pivot2) {
k -= (newIndex1 - index1 + 1);
index1 = newIndex1 + 1;
} else {
k -= (newIndex2 - index2 + 1);
index2 = newIndex2 + 1;
}
}
}

复杂度分析:

  • 时间复杂度:O(log(m+n))O(\log (m+n)),其中mmnn分别是数组nums1\textit{nums}_1nums2\textit{nums}_2的长度。初始时有k=(m+n)/2k=(m+n)/2k=(m+n)/2+1k=(m+n)/2+1,每一轮循环可以将查找范围减少一半,因此时间复杂度是O(log(m+n))O(\log(m+n))

  • 空间复杂度:O(1)O(1)